

Asteroid Itokawa, ISS, and CEV Orion

Why Go to a NEO?

Overview

- Accessibility
- Science of our Origins
- Human Survival
- Resources for Exploration
- Stepping Stones to Mars

- Accessibility
- Science
- Resources
- Operations Experience
- Planetary Defense

△v_{tot} Comparisons for Lunar Surface, Phobos, Deimos, and a few NEOs

for NEOs \(\Delta v \) depends on phasing of orbit and when mission is launched

150-Day Mission to 1999 AO₁₀ Heliocentric Trajectory Plot for Mission

Km Units View From Y= 0.0°, P= 0.0°, R= 0.0° Sun-Centered J2KE Coordinate System Visit to (1999 A010)

- Accessibility
- Science
- Resources
- Operations Experience
- Planetary Defense

Raw Materials from Planet Formation

- Accessibility
- Science
- Resources
- Operations Experience
- Planetary Defense

Water-rich Minerals

253 Mathilde from NEAR

C-type 59 x 47 km

Tempel 1
Prior to Deep Impact

- Accessibility
- Science
- Resources
- Operations Experience
- Planetary Defense

Shakedown Cruise

- Apollo 8 and 10 (1968-69)
- Test hardware "close to home"
- Deep space experience
- No lander necessary

Earth-Moon from NEAR

Extensive, challenging terrain to explore

Itokawa

Vatican City 0.44 km²

- Accessibility
- Science
- Resources
- Operations Experience
- Planetary Defense

Why Go?

Survival

NEO exploration acquires vital knowledge to prevent future impacts

Highly visible and dramatic exploration

Earth from Apollo 16

Earth from NEO at 0.05 AU

Apparent size of a BB held at 2.4 m

Next Steps to NEOs

- Complete rapid NEO target survey ID NEO tgts
- Research & development on:
 - radiation countermeasures
 - habitation and life support
 - NEO mobility systems
- ISS testing of deep-space and mobility systems
- New operations and risk reduction strategies
- Heavy lift capability

NEOs should be NEXT

- Inviting "stepping stones" for US & Partners
- Compelling attractions:
 - Accessible with envisioned systems
 - Science interdisciplinary opens "3rd Planet"
 - Know-how for impact prevention
 - Resources to catalyze exploration, industry
 - Springboards to Moon, Mars, & Beyond
 - sustainable, visible steps into deep space
- NEO missions leverage astronaut skills, experience, adaptability

Back Up

Predicted dectections of Human Exploration targets with twin spacecraft in oppositely phased orbits

Expected number of detected NEOs when we have two IR telescopes in Venus-like orbit, with orbital phase 180° apart. This is for Human Exploration targets which can be reached with <5 km/s one-way delta-v (from Earth escape).

Discovery Rate of the NEO Population

20 April 2010

- ~500,000+Minor Planets
- 6989 NEOs
- 1116 PHOs

Improved NEO Survey Will Likely Find

- 50,000+ NEOs (>140 meters)
- 10,000+ PHOs

Images from: Scott Manley Armagh Observatory

150-Day Mission to 1999 AO₁₀ Earth-fixed Trajectory Plot for Mission

Km Units View From Y= 0.0°, P= 0.0°, R= 45.0° Earth-Centered J2KE Coordinate System Visit to (1999 A010)

Hayabusa Touchdown Site Candidate A: Muses Sea

Largest smooth terrain located between the "Head" and "Body" of the Otter-like [shape of Itokawa]

~60 m across at its widest point.

Hayabusa Touchdown Site Close-Up

(Spatial Resolution: 6-8 mm/pixel)